If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2+7=63
We move all terms to the left:
2k^2+7-(63)=0
We add all the numbers together, and all the variables
2k^2-56=0
a = 2; b = 0; c = -56;
Δ = b2-4ac
Δ = 02-4·2·(-56)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{7}}{2*2}=\frac{0-8\sqrt{7}}{4} =-\frac{8\sqrt{7}}{4} =-2\sqrt{7} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{7}}{2*2}=\frac{0+8\sqrt{7}}{4} =\frac{8\sqrt{7}}{4} =2\sqrt{7} $
| 5x+(x-2(x+4))=0 | | (3x=20) | | k/3-4=-2 | | 21.8a=588.6 | | 9=3/2x+2+7/2x | | −4/1a−4=4/7a−3 | | -(j−5)=3 | | 3n-nn=5 | | 5+-3s=8 | | 4(g+-2)=-20 | | 3t^2-30t+3=0 | | r/3+11=15 | | -11n+-2n+10=-16 | | 2x+2)-6=12 | | 2b-4/12=b-4/12 | | 3x+4+4x-9=30 | | (x/3)+4=7 | | X+7=-47-5x | | 3x+10=-6x+19 | | -7x+4(5x-3)=105 | | 4(-8x-4)+3x=-1 | | 4x+8+2x-4=40 | | 3(-3x-7)=-2 | | (4x/7)-0.6=3.6 | | 5x+5=7x+5 | | (x−2)^2=36 | | -5=2/3t-12 | | (x−2)2=36 | | -7x+2(-x-21)=30 | | 7=u/2+8 | | 3(x-(-2))-2x=-1 | | r=32=63 |